SOME PROBLEMS OF POLARIZATION SENSOR THEORY
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We examine the following problems: the charge in a polarization sensor connected across a capaci-
tive load; the relaxation processes in the sensor circuit after shock wave passage through the specimen;
the polarization current through a sensor in which two polarization mechanisms exist. The possibility is
shown of determining all the unknown parameters of the shock compressed dielectric by means of measure-
ments in the circuits of the short-circuited polarization sensor and a capacitively loaded sensor. Account
for the two polarization mechanisms leads to a solution which describes qualitatively several experimen-
tal facts. In recent years the polarization of dielectrics in shock waves (hereafter simply wave) has be~
come the object of careful study, which follows three directions: broadening of the class of substances
studied, phenomenological description of the experimental results, and clarification of the physical nature
of the observed phenomena. The existing phenomenological theories [1-5] relate the current density j in
the metering circuit with the bulk resistivity p, dielectric permeability €, specific polarization P,, polari-
zation decay (mechanical relaxation) time 7, and compression § of the material behind the shock wave
front. In the theories it is assumed that there is a single polarization mechanism and that the dielectric
is isotropic. The complexity of the resulting solutions makes it difficult to define uniquely Py, €, p, and T
without recourseto additional, specially conducted measurements of, for example, p and (or) €, The anoma-
ly in the bebavior of the relation Py(5) and the sign change of j in the process of wave propagation through
the material (polarity reversal) are not amenable to mathematical description within the framework of the
mentioned theories and indicate the possibility of the existence of several polarization mechanisms with
different values of Py and 7. In the present paper we develop this approach for the case of two mechanisms.
Generally speaking, all the solutions examined here can be obtained as a consequence of the Zaidel theory
[5] under definite particular assumptions. However, in order to clarify the operations performed it is ad-
visable to use the representation of the polarization sensor as an equivalent electrical circuit [2, 4].

1. Polarization Sensor with Capacitive Load. We shall solve the problem using the same premises
as in [4], namely the wave front traveling with the wave velocity D separates the dielectric with initial
thickness I, into two regions of compressed and noncompressed material (the corresponding characteris-
tics are: &y, p, 0, u is the mass velocity £4, p; = ®, u = 0); the material behind and ahead of the wave front
is isotropic; the dielectric is polarized in the front to the magnitude P, with or against the direction of
motion of the material; in view of the one-dimensionality of the problem the wavefront is an equipotential
surface, as is any other surface parallel to the wave front.

Problem Formulation. We represent the dielectric subjected to shock compression by an electrical
circuit at the time t as shown in Fig. 1a. Following [4] we write

Cr= g2y, C=2% R ED (1.1)

(The arguments are made everywhere for unit surface of the shock wave front.)
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Using these expressions, we find the voltage V across the load Cy
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V=G wrnrra—m1 G““E’C“ngU (1.2)
Here Q is the magnitude of the total charge in the system of Fig,
la, which must be found, C is the capacitance of the completely com-
pressed dielectric. For convenience wetransformthe circuit of Fig, la
into the scheme of Fig. 1b, Then

C; = C,Co (Cy+ Co)'1

Fig. 1

Problem Solution. As shown in Fig. 1b, the magnitude of the charge distributed, bvetween C, and Cs,
is determined by the following processes: shock polarization, mechanical relaxation (T), conductivity re-
laxation (§ = pe,/47r). The charge change dQ during the time dt can be taken from [4] [Eq. (14)]

dQ / dt = t- [P, exp (—t/t) — Q] — 8-1 (Q — .5) 1.3)

Equality of the voltages on the condensors C, and C; yields

3
S=QGFnrra—mn:

The initial differential equation (1.3) after substituting (1.4) takes the form

dQ 1 1 o+ T —ut _ P t
B+ O+ i = e (- 1) (1:5)

(1.4)

Its solution with the initial conditions @ = Py and t = 0 leads to

t
0 =P, exp (t /) g exp (—1/1) dt
He DT+ =m0 2 l+nT -+ —w g™ 1.6)
H—x B —w) T uty ’
(."— O b= = e O T (1-—u)2>
By the simple algebraic operations used in [4] we can show that the system charge in the short-
circuited polarization sensor circuit is
i
o exp (¢/v) exp (—¢/u)dt - T
Q=P t[xT + (1 —wil® S [%T + (4 —x) 817 =T (t.7)

0

This expression is a particular®case of (1.6) for Cy >> C (¥ >>1, n~ 1). If the conductivity of the
material behind the wave front is small, the quantity Q is the system bound charge Q.. It can be obtained
by solving the differential eguation (1.5) with ¢>> T

Qoo = -2 [1 — exp (— ¢/ 7)] (1.8)

Substituting (1.6) into (1.2) we obtain in the general case

H
Po exp (t/v) C exp(—t/w
V= 2 di 1.9

Cum+wT+u—mn“é[m+wT+a—mn“ .9

and in the absence of conductivity behind the wave front

_ _Pot 1 —exp(—t/7)
V== wrnrra—m=i (1.10)

2. Relaxation Processes in Polarization Sensor Circuit. Let us find the magnitude of the charge in
the system of Fig. 1b for those cases in which the wave leaves the test material at the metering electrode
without reflection. We shall examine times t = T. We denote t' =t—T and Qi = Q°. Obviously, Q° equals
Qfort' =0,

All the parameters of the circuit of Fig. 1b are constants. Thus
C, = C = auTl-, B = pI§-1, C;=C,

Only the charge Q remains dependent on the time t', and this charge will decay as a result of the ex-
istence of the relaxational processes, and only a part of the total charge, the bound charge Q,,, will decay
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L wryyas) with time 7, while the entire system charge Q decays with the time 4.
| The magnitude of the bound charge at the time t' = 0 (Q%,) is found
5 ‘\\\ g p—— £ from (1.8)
S=—TT Ox’ = '|:P~0T~1 {1 —exp (—T /7l 2.1)
v NP T 4’ Then Q,, for t' > 0 is
Fig. 2 O = Qoxp (=1

and the corresponding decrease of Q is
dQy = —Qu 1=t exp (—t' /1) dt’ 2.2)

The charge decrease as a result of conductivity of the material behind the wave front is

Vo Qi qu 2.3
W=—7g¥ == Forey =~ 507 @.9)

Summing (2.2) and (2.3), we obtain the differential equation

Dt Oy o fv) — Q"1 exp (— '/ 7) 2.4)

The solution of (2.4) with the 1n1tlal conditions

T
Q° = p,rt 2 T/ S exp (—¢t/p)dt 2.5
[i]

[TA+D" g le+NT+{E—ni]™
for t' = 0 yields

Q:Qmorfmexp%{l——exp[t'(%_%)]_i‘ QQOO 1:_-‘m} <m:_6_(_0l0{1_>_> (2.6)

Then
V=0(C+C)

Let us analyze this expression briefly. For Cy;— (which corresponds to the short-circuited circuit
condition) and nonzero 4, (2.6) implies

Q= Q°— Q[ — exp (—t' / V)] 2.7)
The derivative of (2.7) with respect to t' yields the value of the relaxation current
j. = —Qlt-texp (—t' /1),
or after substitution of Q2, from (2.1)
jo=—PI-*11 —exp (—T /)] exp (—¢' /1), {2.8)

which agrees with the solution of [6], obtained within the framework of the Allison theory [1], which does
not take into account the conductivity of the material behind the wave front; and this means that the current
decay in the short-circuited polarization sensor circuit is determined only by the relaxation time 7.

The initial current j; appearing at the moment the shock wave enters the test specimen is independent
of the relaxation processes [4] and is determined by the expression jo =Py T)"!. For known k = j+/j0 we
find the value of »

% = k{lexp (—T /%) — 1l exp (—¢ / 1)}~ 2.9)

If 7 and » are found using (2.8) and (2.9) from experiments in the short-circuited circuit, then it is
easy to find the values of

Py=jmT, C = oxnI-1
and Q, from (2.1). The voltage in the scheme of Fig. 1b for t' = 0 (¢=T) determined the charge Q° =
V(C + Cy), expressed by (2.5). The voltage in this same circuit for any t' > 0 makes it possible to find

from (2.6) the one remaining unknown m. The parameters ® and m contain in themselves the unknowns
€, and p.
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'T - 3, Polarization Current in Sensor in Presence of Two Polariza-
____ 3 _ tion Mechanisms. The fact of anomalous polarization in ionic crystals,
g """""""" ; and also the change in certain cases of the sign of the polarization cur-
rent in the process of wave passage through the specimen, can be ex-
~~~~~ - plained by the existence of at least two independent polarization proc-
~ esses with different signs. Each of these processes must be charac-
¢ ! terized by its own values of T and P;.

Fig. 3 Let us examine the short-circuited case. For definiteness we
assume that Pgi) is always positive, while PSZ) can take both positive
and negative values. In the following arguments we follow [4].

Charge increase in the system takes place only in C, (Fig. 1a) as a result of polarization of addi-
tional dielectric layers

dQ, = (P + PP — Q) -1 dt (3.1)
The charge reduction dQ, owing to mechanical relaxation is expressed as
dQ, = —t-* (PP — exp (—t /)] = PP (1 — exp (—t [ 1,))dt (3.2)
and the charge decrease owing to conductivity is
0y = — (Q — §) 6~ dt (3.3)

Here S is the charge flowing in the short-circuited sensor circuit, whose magnitude must satisfy the
voltage equality condition

Q—38)C=8G
Summing (3.1), (3.2), (3.3), we find
d 1 = —¢ —8
= {Poen TP T — o) - S a 8.4)
or in terms of the charge S
ds 1—u 1 % (T —t) P®exp (—t /) 4 PP exp (—t /1)
dt +S["T+(1—u)t_{7TnT+(1—x)tJ= W+ —nt (3.5)

The solution (3.5) with zero initial conditions makes it possible to write the time dependence of the
polarization current density

>

. PVexp(—t/m) [, O M(T—t)+(1—x
I == TFra—wnt { KT + (1 — %) ¢]®

£
) (®T + (1 —»)1]°! Po® exp (—t/73)
exp (¢/ P'1)§ exp {t /) dt} ®T (1 —n)t 3.6)

i
[l @ =18+ —x ; [T 4 (1 — ) £]°L
{ (xT 4 (1 — %) 1}° exp ( /”2)§ exp (¢ / pa) dt}

which is in essence the superposition of two solutions [4].

Continuing the arguments, we find that the relaxation current is also the superposition of two solu-
tions (2.8), i.e.,

. p) _7 —_ p@ = —y
jo=— {—;,— [1 — expT]exp - f —;,—(1 —exp ?}’)exp T{}

All this makes it possible to evaluate in a new light both the results of T measurements over a wide
range of pressures and the difficulties which arise in the phenomenological description of the experimental
curves of J(t) with the aid of the existing theories.

Figure 2 shows for comparison: the experimental curve 1 obtained in an experiment with NaCl with
a pressure of 100 kbar behind the wave front, T = 0,825 sec; the theoretical curve 2, obtained by super-
posing curve 2 (P, =4.,12 - 1078 C/em?, n =2, 7 = 9= 1.65 psec) and curve 4 (Py=1.24 - 1077 C/ecm?,n=2,
T = 0.04 usec, g = 1.65 usec).
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Figure 3 shows: the experimental curve 1 obtained in experiments with KBr with a pressure of 78
kbar at the wavefront, T = 1.31 usec, the calculated curve 2 obtained by superposing curve 3 ((P, =1.97-1078
C/em?, n =2, T = 0.65 usec, §=6.5 usec) and curve 4 (P, = —0.98 * 1078 C/em?, n =2, T = 9 = 6.5 psec).
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